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LElTER TO THE EDITOR 

Geometrical and electrical properties of crumpled wires* 

J Albino Aguiar, M A F Comes and A S Net0 
Depanamenta de Fisica. Universidade Federal de Pernambuco, 50739 Recife PE, Brazil 

Received 24 October 1990. in final form 28 November 1990 

Abstract. Geometrical and electrical properties of crumpled wires are investigated. Power 
laws connecting the geometrical and electrical properties of these random systems are 
studied and critical exponents are calculated. In particular we have obtained the resistance 
exponent (which seems Io be compatible with a previous conjecture. 

Geometrical and physical properties of crumpled surfaces and strips (cs) obtained 
from random and irreversible compaction of paper sheets and aluminium foils have 
been receniiy siudied [i-jj. iiesides represeniing an inieresiing ptobiem in surface 
statistics on their own, cs can be of potential interest in polymer and surface physics 
as well as in biological problems [4]. Thus, cs can be e.g. a simplified folding model 
to study the configurational properties of two-dimensional polymers or membranes 
containing in their interiors many tightly packed apolar groups shielded from an 
exterior solvent [4]. 

This letter deals with the geometry and with the electrical resistance of crumpled 
wires (cw). Here we present results for non-equilibrium configurations of crumpled 
wires of length L and diameter p with 5 0 s  L l p  s 60 000. In our experiment 154 wires, 
with length L varying from 5 to 3000 cm, were manually crumpled into approximately 
spherically compact balls (in order to obtain a high concentration of lateral contacts 
between different regions of the wire) and divided into three groups G ( p )  with p -.-- r l : - - c . . - . ~ -  A: . .c.L-.L--~. -e . . . :  _--..I" rl - - - - I . .  - - n *  n n o  --A srarrurrrg ,U1 L I 1 S  ULdlllCLCl "1 Ll lC LIIISC: r y p a  U1 **11=3 "DC") LralrrGry p - V . 1 ,  V.VO dllU 

0.05 cm. The c w  balls so obtained are random and irreversible structures. Although 
we did not specify the force with which the c w  were compressed, the compression 
process is very nonlinear and beyond a certain compression the diameter of the c w  
balls does not change appreciably. The electrical resistance of  the wires (made of 
distinct compositions of lead and tin) was 0.23 f 0.03,0.98 f 0.03 and 0.934 i 0.005 Cl/m, 
respectively. Each G ( p )  was formed by seven equivalent families of c w  with n ( p )  
different values of L. Thus n =8 for p =0.1 and 0.08 cm (corresponding to L =  5 ,  10, 
20,40,100,300,1000 and 3000 cm) and n = 6 for p = 0.05 cm (corresponding to L = 20, 
40,100,300,1000 and 3000 cm). From each one of these 154 c w  we defined an average 
diameter as the arithmetic mean of seven measurements of the diameter along seven 
directions taken at random. Furthermore, for each group we obtain a mean diameter 
( t ) = ( # ( L ) )  after averaging over the members of the seven families with a same value 
of L within a group. Then, (6)s are averages on 7 X I  values of c w  diameters. From 
these sets of 49 c w  size measurements we take in addition the standard deviation u(5) 
which measures the 'surface' roughness of the CW. The plot of L x ( t ) / p  is shown in 
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figure 1. It is found that L =0 .032( ( ( ) /p )2~ '5  cm with a coefficient ofcorrelation superior 
to 0.999. Figure 1 shows that all the experimental points fall on a single straight line 
independently of p for L varying over two decades. Since L - mass, D(cw) = 2.75 is 
the mass-size exponent for cw. This exponent interpolates exactly at half distance 
between D(cs)  = 2.5 observed for crumpled surfaces [ 1-31 and D = 3 for a compact 
object in the physical tridimensional space. It is interesting to observe that D(cw) = 2.75 
is quite different from the mass-size exponent 11 v = 513 for a self-avoiding random 
walk in  d = 3 [ 5 ] .  Although the crumpling procedure of this experiment seems ill 
defined, the exponent D(cw) is unaffected by the way of crumpling (with pressure 
applied, in haste or not). The rugosity of the c w  as defined by the standard deviation 
U(() scales as U = 1.14p-n.96(()0.69, i.e. u(5) scales as U(() - Lo.*'. The surface roughness 
U((), which is essentially a correlation function, is expected to scale with the 
uncrumpled size as U- L'-" [6 ] ,  where D is the fractal dimension of the cw. If  we 
use D = D(cw) = 2.75, the expected exponent for U(() x L is 3 - D = 0.25, exactly as 
observe d. 

The electrical resistance R of c w  was measured as a function of the size ( c ( L ) )  
using a high accuracy digital voltmeter and a stable current source. R = R ( ( ( ) )  is an 
average value on 49 measurements of the electrical resistance for seven cw.  To find 
R the c w  were rotated at random without mechanical deformations and the electrodes 
were adjusted along a particular diameter. The dependence of R with the size (6) is 
shown in figure 2. If we study the dependence of log(p"R) with log(() we obtain the 
best fit of all the experimental data for 01 = 1. The power-law fit to the experimental 
points is given by lOOpR =0.25(()-'."*Cl cm with a coefficient of correlation superior 

Figure i. iog-iog pioi oi  i against ( i j i p .  is') is ihe average diameter 0: c e r  0: kngih L 
and p is the diameter of lhe wire (p=O.I cm (0). p=0.08cm (0) and p=O.OScm (A)) .  
All the experimental paints fall on the straight line L=0.032((()/p)"5 (broken line) with 
a coefficient of correlation superior to 0.999. D(cw)=2.75 is  the mars-size exponent for 
cw. The maximal variabilities of the lengths involved in the experiment are (LIP) = 60 000 
and (L-maximai/L-minimal) =600: sec lcxt. second paragraph. 
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Figure 2. Experimental plot of IOOpR (n cm) against (0 (cm) for wires with diameter 
p =0.1 cm (0). 0.08 cm (0) and 0.OScm (A).  The best fit to these data is obtained with 
the function 100R=0.25(()-o.MC2 cm (broken line). < =  -0.64 is the electrical resistance 
exponent for cw; see text, third paragraph. 

to e.?. Besides the pe..er-!aw dependence othcr fiaing f”EC!iOES %el. used. n.. 
power-law fit presented is the best approximation to the experimental points. From 
the scalings R x ( c )  and u ( f ) x ( c )  we conclude that the product R .  U(.$) is almost 
independent of rhe size: Ru(.$) =0.003p-’ ’ 6 ( ( 5 ) 0 0 s .  

The relationship between the relative fluctuations of the electrical resistance, 
u ( R ) / R ,  and size, u(c) / (c) ,  is shown in figure 3. In this case several forms of fitting 
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Figure 3. T h e  relationship between the relative fluctuations is the h t k a l  rcsirlancc, 
p - ” ‘ o ( R ) / R , a n d r i r e , a ( ~ ) / ( ~ ) f o r p = O . I  cm (0) andp=0.05cm (A).The brokencurve 
represents the best fil p-”’s( R ) / R =  1 2 8 . 3 [ ( a ( ~ ) / ( ~ ) ) - 0 . ~ Z ] ~ 4 ‘ ;  see text, fourth para- 
graph. 
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functions were tried. The best adjustment to the experimental points is given by 
p - ' 1 2 u ( R ) / R  = 128.3[(u(g)/(()) -0.042]0.48 cm-'12 (with a coefficient of correlation 
superior to 0.9) as indicated by the discontinuous line in figure 3. In figure 3 only the 
experimental points for c w  with p = 0.05 cm and p = 0.1 cm are exhibited. If the points 
associated with p = 0.08 cm are introduced we get the best fit p - ' 1 2 u ( R ) / R  = 
75.4[(u(g)/(5)) -0.042]0.38 and the coefficient of correlation decreases to 0.75. As an 
additional piece of information about the behaviour of u ( R ) / R  versus u(g)/(g) we 
observe that a single power-law fitting function presents a further decrease of the 
coefficient of correlation to circa 0.5. 

The electrical resistance R of a physical system of size (5) scales as R - (g)<, where 
5 = d, - D [7]. The random walk exponent dw associated with the system of dimension 
D is defined by ( r 2 ( N ) ) -  " I d w  where (r2)'12 is the average distance travelled by a 
particle diffusing on the structure in the long-time regime N>>1 [SI. It has been 
conjectured that d, = 2 for a folded linear chain with a high concentration of bridges 
incorporated independently of D [9]. This conjecture seems to be observed in our 
experiment with cw. For cws the bridges are associated with the lateral contacts 
between different regions of the wires. Thus two points in contact in the tridimensional 
space may be quite apart along the wire. If we adopt d ,  = 2 for our c w  and use 
D =  D ( c w ) =  11/4 as obtained from the experiment (from both plots of L x ( 5 )  and 
U x L ) ,  the expected electrical resistance exponent would be [ = 2 - 11/4 = -0.75 
which is quite close to the observed value leXp = -0.64 within the experimental errors. 
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